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Preface

The Department of Defense needs far more satellite communications capacity
than it owns and thus must lease satellite communications services.  This report
examines a “rule of thumb” that communications planners can use to make
efficient satellite leasing decisions while facing uncertain demand for satellite
services.

The research is a continuation of work originally undertaken at the request of
Headquarters, United States Air Force (SC), the Assistant Secretary of the Air
Force for Acquisition (SAF/AQS), and the Air Force Space Command (XP and
SC).  It is part of the Employing Commercial Communications task within Project
AIR FORCE’s Aerospace Force Development Program.

This research should interest defense analysts concerned with obtaining satellite
communications within the Air Force, the other military services, and the defense
agencies.  It should also be of general interest to those making procurement
decisions while facing uncertain demand.

Project AIR FORCE

Project AIR FORCE, a division of RAND, is the Air Force federally funded
research and development center (FFRDC) for studies and analyses.  It provides
the Air Force with independent analyses of policy alternatives affecting the
development, employment, combat readiness, and support of current and future
aerospace forces.  Research is performed in four programs:  Aerospace Force
Development; Manpower, Personnel, and Training; Resource Management; and
Strategy and Doctrine.
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Summary

There is a gap that will extend into the foreseeable future between the military
requirement for long-haul wideband communications and communications
satellite capacity the military owns.1  The United States government will need to
bridge the gap by leasing commercial communications satellite services.  Military
communications planners are faced with the difficult task of choosing the
appropriate amount of communications capacity to lease, and the appropriate
length of the lease, given uncertainty over future communications demand.

This report presents a simple, graphical technique to help communications
planners determine the appropriate amount of communications capacity to lease
when facing uncertain demand.  A simple mathematical model shows why the
graphical technique works.  Extensions to the basic model show how price
uncertainty and the ability to salvage unused capacity change the appropriate
amount of capacity to lease.  Finally, a multiple-period version of the basic model
shows how communications planners can consider the trade-offs between long-
and short-term leases when demand grows over time.

_________________ 
1Headquarters, United States Space Command, Advanced Military Communications Capstone

Requirements Document, Peterson Air Force Base, Colorado, April 24, 1998.
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1. Introduction

United States Space Command projects that long-haul wideband
communications required for daily military operations will grow from 1 gigabit
per second (Gbps) today to roughly 9 Gbps in 2008.1  Crisis response demand is
projected to grow from less than 1 Gbps to 4 Gbps.  The current capacity of
military communications satellites for wideband communications is about 1
Gbps; the capacity will grow to less than 4 Gbps in 2004 when the Gapfiller
satellite system comes into operation.  Thus, the projected military-owned supply
will fall well short of the projected demand into the foreseeable future.  The
United States government will need to bridge the gap by leasing commercial
communications satellite services.

Commercial systems currently supply 200 to 250 Gbps of long-haul, wideband
capacity to both commercial and government users, at a variety of lease length
and price combinations.  Prices, as one might suppose, decrease with increasing
lease length.  Military communications planners must choose the appropriate
amount of satellite communications capacity to lease, and the appropriate length
of the lease, in the face of an uncertain future demand.  Because longer leases
purchased in advance tend to be less expensive, the decisionmaker must find the
appropriate amount of capacity to lease in advance of the actual realization of
demand, knowing that he will have to meet any demand overages with short-
term leases on the spot market.

This is a difficult problem.  In this report, I identify a simple graphical technique
that communications planners could use to gain insight into the amount of
communications capacity to lease.  The graphical technique is based on a static
model that employs a well-known result in the optimal inventory literature, and I
show how, with some restrictions, a dynamic model can be solved by the same
graphical technique as a series of static problems.

_________________ 
1Headquarters, United States Space Command, Advanced Military Communications Capstone

Requirements Document, Peterson Air Force Base, Colorado, April 24, 1998.
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The Graphical “Rule of Thumb”

A communications planner faces the following basic problem:

Demand for future satellite communications capacity is uncertain.  You can buy
some fixed capacity now before you find out the actual demand.  You can buy
any additional capacity you need on the spot market after you learn the actual
demand.  How much fixed capacity should you buy now to minimize expected
cost?

To solve this problem, first draw a curve that indicates the probability that
demand will be greater than or equal to a particular value (see Figure 1).  The
horizontal axis indicates the level of demand, and the vertical axis indicates the
probability.

Then, to find the expected cost-minimizing amount of capacity to purchase in
advance, find the ratio of the price of advance capacity to spot market capacity,
and locate the corresponding point on the vertical axis.  Draw a horizontal line
from the point on the vertical axis to the curve, and then drop a vertical line to
the horizontal axis.  The line will intersect the horizontal axis at the cost-
minimizing amount of capacity to be purchased in advance.

An explanation of why this technique works is detailed in the second chapter,
along with some extensions examining the effects of being able to sell off excess
capacity and price uncertainty.  The third chapter shows where this approach can
be used to evaluate leases of varying lengths in a dynamic environment.  The
final chapter offers conclusions and recommendations for further work.

Requirement (Gbps)
0

1
RANDMR1402-1

Figure 1—Graphical Solution
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Related Literature

This report touches on two strands in the literature.  The first strand concerns
optimal capacity or inventory decisions under uncertainty, and the second strand
deals with determining optimal rules of thumb for economic actors.

Optimal Capacity

The optimal capacity decision problem is closely related to the optimal inventory
problem, and indeed, in a one-period problem, can be identical with the
inventory problem.  The communications capacity problem described above is
essentially identical to the classic newsvendor problem, where there are costs of
purchasing or holding inventory, of being short of inventory, and possibly a
salvage value on excess inventory.  Arrow, Karlin, and Scarf (1958) provide an
exhaustive treatment of the basic inventory problem.  Other important references
on the problem are Arrow, Harris, and Marschak (1951), Whitin (1952), and
Dvoretzky, Kiefer, and Wolfowitz (1952a, b).  Scarf (1959) provides an exposition
of a Bayesian approach to solving the inventory problem when the underlying
probability distribution of demand is unknown.  Veinott (1966) provides a good
tutorial on and a literature review of standard mathematical inventory theory.
Ridder, Laan, and Salomon (1998) provide a modern treatment of the
newsvendor problem.

The dynamic optimal capacity problem under uncertain demand is treated in
Manne (1961).  In Manne’s paper, demand evolves according to a geometric
Brownian motion process, and capacity, once purchased, endures forever.  These
assumptions allow Manne to solve the problem by considering finite subintervals
where the starting or regeneration points are determined by when demand has
grown by a particular amount.

Luss (1982) provides a detailed review of the capacity expansion operations
research literature.

A more recent vein of the literature considers capacity investment as a special
case of irreversible investment under uncertainty, and uses an options theory or
real options approach.  These papers generally model the demand curve as
shifting over time stochastically, with the demand shift parameter following a
geometric Brownian motion process. Pindyck (1988, 1991) and Abel and Eberly
(1994, 1996) typify this approach.
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Rules of Thumb

Baumol and Quandt (1964), in their seminal paper “Rules of Thumb and
Optimally Imperfect Decisions,” list several desirable attributes of rules of
thumb.2  They advocate a simulation approach for evaluating the effectiveness of
a particular rule of thumb with the optimal solution. Smith (1991) demonstrates a
simulation method for determining the optimal parameter values for a specific
rule of thumb for solving a stochastic dynamic programming problem.  Smith
(1992) explores the implications of agents using near-optimal rules of thumb for
the ability of economists to empirically distinguish between the “standard” real
business cycle model and alternatives.  Krusell and Smith (1996) examine the
robustness of the general equilibrium stochastic growth model to agents using
near-optimal rules of thumb.  Lettau and Uhlig (1999) model how agents would
choose among competing rules of thumb, and explore how the performance of
the equilibrium rules of thumb differs from dynamic programming.  Quite
frequently in this literature, researchers identify relatively simple decision rules
that are either optimal or are only pennies away from optimality.  I examine one
such rule.

________________ 
2 “. . . we define a rule of thumb to be a set of rules describing a decision procedure with the

following characteristics:
(a) The variables which are employed in the decision criteria are objectively measurable.
(b) The decision criteria are objectively communicable, and decisions do not depend on the

judgment of individual decision-makers.
(c) As a corollary to (b), every logically possible configuration of variables corresponds to a

(usually unique) determinate decision.
(d) The calculation of the appropriate decision is simple, inexpensive, and well suited for

frequent repetition and for spot-checking by management in higher echelons.”
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2. The One-Period Model

After I explain why the graphical technique outlined in the introduction gives the
cost-minimizing solution to a class of planning problems, I show two extensions
to the basic model:  one where the government can obtain a partial refund on
capacity contracted for but not used, and one where there is some uncertainty
over the spot-market price.

To reiterate, the basic problem a communications planner faces is:

Demand for satellite communications capacity is uncertain.  You can buy some
fixed capacity before you find out the actual demand.  You can buy any
additional capacity you need on the spot market after you find out the actual
demand.  How much fixed capacity should you buy to minimize expected cost?

A slightly more formal statement of the problem is:

Suppose that demand for satellite communications x is distributed as f(x).  You
can buy fixed capacity a for total cost   p aa  before you find out the actual demand.
You can buy any residual capacity needed on the spot market for     p x as( )− , if x is
greater than a.  What is the value of a that minimizes expected cost?

We can write the following expression for the expected cost C:

C p a p x a f x dxa s
a

= + −
∞

∫ ( ) ( ) (1)

where   pa  is the price of a,

a is the amount of fixed capacity,

  ps  is the spot market price,

x is communications demand, and

f(x) is the distribution of demand x.

The first term in the expression,   p aa , gives the total cost of fixed capacity a.  The

second term in the expression,

  
p x a f x dxs

a

( ) ( )−
∞

∫ ,
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gives the expected expenditure on spot-market communications capacity, given
that fixed capacity is a.

We can find the value of a that minimizes the expected cost C by using the first-
order condition to solve for the optimal value a*.  The first-order condition is
simply that the first derivative of C with respect to a is equal to zero.  Equation
(2) gives the first-order condition.

∂
∂
C
a

p p f x dxa s
a

= − =
∞

∫ ( ) 0 . (2)

We can rewrite Eq. (2) in terms of F(a), 1 –  the cumulative density function,

∂
∂
C
a

p p F aa s= − =( ) 0 (3)

where

F a f x dx
a

( ) ( )=
∞

∫ .

Solving Eq. (3) for a gives

    
a F

p
p

a

s
* =







−1 (4)

where     F
− ⋅1( )  denotes the inverse of     F( )⋅    (i.e., [ ( )] )1F F x x− = .  a* is the amount of

fixed capacity that minimizes the expected cost.

We can verify that we are at a local minimum by examining the second-order
condition:

  

∂
∂

2

2
C

a
p F as= − ′( ) (5)

which is positive, because  −ps  is negative and     ′F a( ) is negative.

Graphical Interpretation of the Solution

Figure 2 gives a graphical interpretation of the solution.  It shows an illustrative
cumulative distribution function, where the vertical axis gives the probability
that demand will be greater than or equal to x.  The price ratio is also read off the
vertical axis.  The graphical process of drawing a line from the price ratio on the
vertical axis to the cumulative distribution function line and then dropping a line
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0

1

a� = F��1� �pa/ps�

F�x�

pa/ps

RANDMR1402-2

Figure 2—Graphical Interpretation of the Optimal Solution

to the horizontal axis to find the optimal capacity is equivalent to solving the
equation     a F p pa s* /= −1( ) to find the optimal capacity.1

Figure 3 gives an alternative graphical interpretation of the solution.  In Figure 3,
the hatched area to the right of the optimal capacity is the probability that
demand will exceed the capacity.  This probability is exactly equal to the price
ratio.2  We are led to another point:  if an expected cost-minimizing

0

1

a� = F��1� �pa/ps�

F�x�

pa/ps

RANDMR1402-3

Figure 3—Alternative Graphical Interpretation of the Optimal Solution

_________________ 
1Whitin (1952) uses a similar diagram in his analysis of the optimal inventory of seasonal goods.
2Arrow, Harris, and Marschak (1951) provide a similar diagram to illustrate the optimal solution

to a one-period inventory problem.
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decisionmaker chooses a certain capacity, then the decisionmaker is implicitly
asserting that the probability of demand exceeding that capacity is no more than
a price ratio.  If decisionmakers differ in their assessment of the optimal capacity,
it is because their probability estimates differ.

Key Assumptions

This model, while giving a very general solution, is based on several key
assumptions:

• The probability distribution of demand is known.

• Minimization of present value of expected cost is the appropriate objective.

• Demand is exogenous.

• Relative prices are exogenous.

• Prices are linear in quantity.

Let’s briefly discuss each of these assumptions in turn.

The probability distribution of demand is known.3  This assumption is perhaps the
most debatable.  Quantifying uncertainty is difficult.  Military planners generally
have little information on the historical distribution of demand.  In addition, the
distribution of demand is not stationary over time, adding to the difficulty of
estimating the current distribution based on the little historical data available.
Also, demand is subject to spikes associated with unique historical events, only
some of which can be anticipated by the planner.  All these effects combine to
make any effort to determine the distribution of demand seemingly futile.

However, even if we cannot get a precise statement of the distribution faced by
the decisionmaker, all is not lost.  Part of the value of the graphical solution of
this model is that it allows decisionmakers to make explicit the relationship
between buying decisions and their judgment as to the likelihood of certain

________________ 
3Dvoretzky, Kiefer, and Wolfowitz (1952a) offer some stern words on this subject: “It may be

objected that our method requires one to specify the function W [the probability distribution of
demand] and that this function may be unknown or difficult to give.  We wish to emphasize that the
need for a function W is inevitable in the sense that any method which does not explicitly use a
function W simply uses one implicitly.  Thus one who selects a method of solving the inventory
problem which ostensibly has the advantage of not requiring the specification of W is simply
relinquishing control of W, and may be implicitly using a W of which he would disapprove (if he
knew it).  It is difficult to see what advantage accrues to an ordering agency from deliberately
burying its intellectual head in the sand.  Even if the function W is very difficult to obtain it seems
preferable to make some attempt at an intelligent decision about it.  A rough approximation or
greatly simplified version of the underlying W may be preferable to completely ignoring this
fundamental datum of the problem.”
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outcomes.  Judgments on the likely distribution of demand can be compared and
debated, and the participants in the conversation can clearly see the effect of
alternative assumptions on the optimal capacity.  The model also makes some
relationships more explicit—for example, a decisionmaker’s choice to set capacity
at a particular level implies that he thinks that the chance of demand exceeding
that level is no more than the price ratio.

Minimization of expected cost is the appropriate objective.  This assumption means
that the objective function considers only expected cost and not the possible
variance in cost.  If the decisionmaker is risk averse, this would not be an
appropriate assumption.  Since the decisionmaker in this case is acting in the
interests of the U.S. government, and the government is highly diversified, it is
reasonable to assume that the government is risk neutral, i.e., that the
government cares only about expected cost and not about possible variance in
cost.

Demand is exogenous.  This assumption means that the demand given by the
distribution function is not a function of the price of communications capacity.
Demand in this case is set externally and is not a decision variable; the only
decision variable available to the decisionmaker is the amount of fixed capacity
to buy.  The decisionmaker has no effect on the amount demanded.

Relative prices are exogenous.  This assumption means that the decisionmaker is a
“price-taker” and his decisions do not influence the market price.

Prices are linear in quantity.  This assumption means that the total cost of a
particular quantity of communications capacity can be expressed as the product
of the quantity and a price.  That is, there are no “quantity breaks.”

Unfortunately, it seems unlikely that analytic solutions, much less graphical
solutions, exist for models that violate these assumptions.

Extending the Basic Model

Redeeming Unused Capacity

A new proposed contractual mechanism would allow the Air Force to redeem
unused capacity for some amount less than the original purchase price.4

_________________ 
4The Air Force is not allowed by law to sell unused capacity on the open market, hence this

alternative arrangement has been proposed.  For details, see Office of the Under Secretary of Defense
(Acquisition & Technology), Report to Congress on Impediments to the Innovative Acquisition of
Commercial Satellite Communications, Washington, D.C., June 1998.
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Suppose that unused capacity can be redeemed at price   ρps , where     0 < <ρ p pa s/

(that is, the redemption price is always less than the advance purchase price).
Then the planner’s problem becomes

C p a p x a f x dx p a x f x dxa s s
a

a

= + − − −
∞

−∞
∫ ∫( ) ( ) ( ) ( )ρ . (6)

The first-order condition then becomes

∂
∂

ρC
a

p p f x dx p f x dxa s s
a

a

= − − =
∞

−∞
∫ ∫( ) ( ) 0 . (7)

Rewriting Eq. (7) in terms of

F a f x dx
a

( ) ( )=
∞

∫

yields

∂
∂

ρC
a

p p F a p F aa s s= − − − =( ) [ ( )]1 0 .

Solving for a*,

    
a F

p p
p p

a s

s s
* =

−
−







−1 ρ
ρ

. (8)

Note that ( )/( )p p p pa s s s− −ρ ρ  decreases as ρ  increases, which implies that a*
increases as ρ  increases.  This result is intuitively appealing, for it simply means
that the higher the redemption value of unused capacity, the higher the amount
of capacity you would be willing to buy in advance.

Stochastic Spot-Market Price

In addition to demand uncertainty, planners may also face price uncertainty.
Suppose that price   ps  is distributed as     h ps( ).  Then we can write the expected
cost as

    

C p a p x a f x dx h p dpa s
a

s s= + −












∞

−∞

∞

∫∫ ( ) ( ) ( ) . (9)

The first-order condition then becomes
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∂
∂
C
a

p p h p dp f x dxa s s s
a

= =
−∞

∞ ∞

∫ ∫( ) ( ) 0 . (10)

Rewriting Eq. (10) in terms of

  
F a f x dx

a

( ) =
∞

∫ ( )

yields

∂
∂
C
a

p p h p dp F aa s s s= − =
−∞

∞

∫ ( ) ( ) 0 . (11)

Solving for a*,

a F
p

p h p dp

a

s s s

*

( )

=





















−

−∞

∞

∫
1 (12)

which shows that in this static, one-period model, only the expected value of the
spot price enters into the expression for the optimal capacity, and the variance of
the spot price has no effect on the optimal capacity.  This may seem
counterintuitive, but it results from the assumption that expected cost is the
appropriate measure of merit and that the decisionmaker, when acting for the
government, is risk neutral.
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3. A Multi-Period Model

The static one-period model is attractive because it is mathematically tractable
and has a simple graphical solution that can be easily implemented.  However,
communications planners face a dynamic, multiple-period world where capacity
decisions made in one period can have influence for many later periods.  It seems
that the optimal capacity will depend not only on the demand distribution of the
immediate period but also on the distributions of demand far out into the future.
So the question naturally arises, can the graphical solution method still provide
useful insight in a multiple-period world?

The answer is a qualified yes.  Under certain restrictions, outlined below, the
graphical technique can still provide the optimal answer, even though the
decisionmaker takes into account only the demand distribution of the immediate
period.

Suppose that demand for satellite communications x at time t is distributed as

    f xt( ) .  You can lease one period of capacity   at  for cost   p aa t  or lease two periods
of capacity   bt  for price   p bb t . You can buy any residual capacity needed on the
spot market for

 

    

p x a bs t t j
j

− −










−

=
∑

0

1
.

What values of   at  and   bt , t = 0 . . . ∞  minimize expected cost?

We can write a recursive expression for expected cost from time t  forward as

V c p a p b p x a b c f x dx V bt a t b t s t
a b c

t t t t

t t

( ) ( ) ( ) ( )− + + − − − +
+ +

∞

+∫ β 1

where   at  is the amount of one-period contracts purchased at time t,

  bt  is the amount of two-period contracts purchased at time t,

  pa  is the price of   at ,

  pb  is the price of   bt ,
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c is the stock of two-period contracts purchased in the previous period, 
i.e.,     bt−1, for t ≥ 1,

β  is the discounting term, and

    f xt( )  is the distribution of demand x at time t.

To solve this problem, we consider two subcases—one where the price of the
two-period lease is greater than or equal to the discounted present value of the
one-period lease over two periods, i.e.,     p pb a≥ +( )1 β , and one where the price of
the two-period lease is less than the discounted present value of the one-period
lease over two periods, or     p pb a< +( )1 β .

Clearly, if p pb a≥ +( )1 β , there is no advantage to buying the longer lease, since
the discount for buying “in bulk” is outweighed by the time value of money as
reflected in the discount rate, and the optimal solution will set bt ≡ 0  for all t and

  
a F

p
pt t

a

s

* =






−1

as in the one-period problem.  So the multi-period problem becomes simply a
sequence of one-period decisions.

Now, let’s consider the case where     p pb a< +( )1 β .  If     f xt( )  is stationary, i.e.,

    f x f xt t+ =1( ) ( ) , or if     f xt( )  grows over time, i.e.,

  
f x dx f x dxt

s
t

s
+

∞ ∞

∫ ∫≥1( ) ( )

for all s and t, then

    
F

p
p

F
p

pt
b

s
t

b

s

−
−
−

+






≥
+







1
1
1

1 1( ) ( )
.

β β

That is, the optimal capacity in period t will always be greater than or equal to
the optimal capacity in period t – 1, so if we buy all our capacity in t – 1 in two-
year contracts, none of it will go to waste in period t.

Thus, in this case, the optimal solution will be to set   at ≡ 0  for all t and

b F
p

p
bt t

b

s
t*

( )
=

+






−−
−

1
11 β

for all t.
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Hence, for the case where     f xt( )  is stationary or grows over time, myopically
choosing     bt

*  based solely on this period’s distribution and the capacity on hand
results in the cost-minimizing choice of capacity over time.  Figure 4 illustrates
this solution.

Unfortunately, if     f xt( )  is declining or fluctuating over time, there is generally no
analytic closed-form solution, and thus the problem will not be subject to
solution by the type of technique examined above (Veinott (1966)).  However,
problems of this type can be solved by numerical techniques under specific
assumptions as to the form and parameters of the demand distributions.

The one-period graphical technique is still useful if demand is stationary or
growing in the sense described above, or if the amortized cost of a multi-period
lease is greater than that of a single-period lease.1  Fortunately this seems to be
the case for many military communications planning applications.  But what
about the case where the amortized cost of a multi-period lease is less than that
of a single-period lease and demand is declining or may fluctuate over time?

In this case, the optimal solution will involve either all multi-period leases or a
mix of multi-period and single-period leases.  Unfortunately, not much more can

0

1

Ft�x�







bt�1 bt
�

Ft
�1 pb

pb

RANDMR1402-4

Figure 4—Graphical Interpretation of the Multi-Period Model

________________ 
1This latter case may hold more frequently than one would guess.  The Department of Defense

has recently negotiated several one-year lease contracts for satellite transponders at rates within a few
percentage points of longer-term contracts.  Given a sufficiently high discount rate, the Department of
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be said without assuming a particular functional form for the evolution of the
demand distribution over time, and even then the resulting solution may be
difficult to characterize as a rule of thumb.  However, if one is willing to
postulate specific demand distributions over time, there is at least one technique
for finding an “optimal” approximation to the optimal decision rule.  Smith
(1991), in a numerical experiment, compares the performance of an optimal
decision rule for a stochastic dynamic programming problem to the performance
of a simple partial-adjustment rule of thumb, where the parameter governing the
percentage of the full adjustment to make in each period was chosen to maximize
the objective.  (In a partial adjustment rule, the planner observes current capacity
and current demand, and buys long-term leases of m percent of the difference
between current demand and current capacity, and buys (100 – m) percent as
short-term leases.)  Smith found the performance of the optimal partial-
adjustment rule of thumb to be within a few percentage points of that of the
optimal decision rule for the problem he examined.  Perhaps this technique could
be fruitfully applied to satellite communications planning for those cases not
covered by the graphical rule of thumb.

________________________________________________________________________ 
Defense may be facing a regime in which the price of multiple-year contracts is strictly greater than
the discounted present-value stream of payments for one-year contracts.
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4. Conclusions and Recommendations for
Further Investigation

We have demonstrated a graphical technique for solving a particular type of
communications capacity problem, illustrating its applicability and limitations in
a multiple-period context.  Military satellite communications planners should
consider using this approach, or perhaps a more elaborate one, for gaining
insight in the initial evaluation of leasing decisions.

Further work along the lines of Smith (1991) is needed to address those cases
where the distributions of demand are not static or increasing in the sense
described in Chapter 3.  This will require assumption of specific functional forms
and parameters for the evolution of demand over time in order to yield a
dynamic program that can be solved by numerical methods.  However, it may be
possible to find a rule of thumb that would perform well over the scenarios
typically faced by communications planners, and come closer to the attributes
proposed by Baumol and Quandt for decision criteria to be directly
communicable and not dependent upon the judgment of individual
decisionmakers.
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